COMBINATORICA

Akadémiai Kiadó – Springer-Verlag

NOTE

COMPLEXITY OF THE FROBENIUS PROBLEM

J. L. RAMÍREZ-ALFONSÍN

Received May 20, 1994 Revised October 29, 1994

Consider the Frobenius Problem: Given positive integers a_1, \ldots, a_n with $a_i \geq 2$ and such that their greatest common divisor is one, find the largest natural number that is not expressible as a non-negative integer combination of a_1, \ldots, a_n . In this paper we prove that the Frobenius problem is NP-hard, under Turing reductions.

1. Introduction

Consider the *Frobenius Problem*: Given positive integers a_1, \ldots, a_n with $a_i \ge 2$ and such that their greatest common divisor is one, find the largest natural number that is not expressible as a non-negative integer combination of a_1, \ldots, a_n . For the special case of n=2, the answer is explicitly known, it is $a_1a_2-a_1-a_2$ (see Theorem 2.1). Rödseth [9], Selmer and Beyer [12], Greenberg [3] and Scarf and Shallcross [10] have developed algorithms to solve the Frobenius problem in the case n=3. See [5, 11] for a further literature on the general problem.

R. Kannan [6] gave a polynomial time algorithm for any fixed n. He also suggested that the problem should be NP-hard for variable n; however, no proof of this statement seems to be known [7]. Our aim is to confirm this statement.

Theorem 1.1. The Frobenius problem is NP-hard.

First, we briefly give some relevant aspects of computational complexity needed in this paper; for a detailed presentation see [4] and [2].

Decision Problems are problems having merely two possible answers: either yes or no. Suppose Π and Π' are two problems, a polynomial time Turing reduction from Π to Π' is an algorithm A which solves Π by using a hypothetical subroutine A' for solving Π' , such that, if A' were a polynomial time algorithm for Π' then A would be a polynomial time algorithm for Π . We say that Π can be Turing reduced to Π' .

Mathematics Subject Classification (1991): 68 Q 15, 90 C 10

A problem Π is called (Turing) *NP-hard* if there is an NP-complete decision problem Π' such that Π' can be Turing reduced to Π .

2. The Proof

Let a_1, \ldots, a_n be positive integers with $a_i \ge 2$ and such that $\gcd(a_1, \ldots, a_n) = 1$. Let $F(a_1, \ldots, a_n)$ be the largest natural number p such that p is not a non-negative integer combination of a_1, \ldots, a_n . Note that the fact that $\gcd(a_1, \ldots, a_n) = 1$ implies that $F(a_1, \ldots, a_n)$ exists.

Theorem 2.1. [1] (Brauer–Shockley)

$$F(a_1, \dots, a_n) = \max_{\ell \in \{1, 2, \dots, a_n - 1\}} t_{\ell} - a_n$$

where t_{ℓ} = the smallest positive integer congruent to ℓ modulo a_n , that is expressible as a non-negative integer combination of a_1, \ldots, a_{n-1} .

Proof. Let S be any positive integer. If $S \equiv 0 \pmod{a_n}$ then S is a non-negative integer combination of a_n . If $S \equiv \ell \pmod{a_n}$ then S is a non-negative integer combination of a_1, \ldots, a_n if and only if $S \geq t_\ell$.

We shall prove Theorem 1.1 by giving a Turing reduction from the Integer Knapsack Problem [IKP], which is known to be NP-complete ([8], page 376).

Input: Positive integers b_1, \ldots, b_n and t.

Question: Does there exist integers $x_i \ge 0$, with $1 \le i \le n$, such that $\sum_{i=1}^n x_i b_i = t$?

We will prove that, by using an hypothetical subroutine A that solves the Frobenius problem, we may create an algorithm B for solving [IKP] as follows.

Let $gcd(b_1,...,b_n) = r$. We may assume r = 1, otherwise consider [IKP] with input $b'_i = \frac{b_i}{r}$, for each i = 1,...,n, and $t' = \frac{t}{r}$.

Algorithm B

Find
$$F(b_1,...,b_n)$$

If $t > F(b_1,...,b_n)$ then

There exist integers $x_i \ge 0$, $1 \le i \le n$, such that $\sum_{i=1}^{n} x_i b_i = t$.

Else

Find $F(\bar{b}_1,...,\bar{b}_n,\bar{b}_{n+1})$ where $\bar{b}_i = 2b_i$ for each i = 1,...,n and $\bar{b}_{n+1} = 2F(b_1,...,b_n) + 1$ (note that $\gcd(\bar{b}_1,...,\bar{b}_{n+1}) = 1$ since $\gcd(\bar{b}_1,...,\bar{b}_n) = 2$ and $\bar{b}_{n+1} \equiv 1 \pmod{2}$) Find $F(\bar{b}_1,...,\bar{b}_n,\bar{b}_{n+1},\bar{b}_{n+2})$ where $\bar{b}_{n+2} = F(\bar{b}_1,...,\bar{b}_{n+1}) - 2t$.

We need the following proposition before proving Theorem 1.1.

Proposition 2.2. Let b_i for each $i=1,\ldots,n$, and \bar{b}_i for each $i=1,\ldots,n+1$ be as in algorithm **B**. Then $F(\bar{b}_1,\ldots,\bar{b}_{n+1})=4F(b_1,\ldots,b_n)+1$.

Proof. Let g be an integer such that $g > 4F(b_1, \ldots, b_n) + 1$. Let $g' = g - \ell \bar{b}_{n+1}$ where $\ell \equiv g \pmod{2}$. If $\ell = 0$ then $g' = g > 4F(b_1, \ldots, b_n) + 1 > 2F(b_1, \ldots, b_n)$. Otherwise, if $\ell = 1$ then

$$g' = g - \bar{b}_{n+1} > 4F(b_1, \dots, b_n) + 1 - (2F(b_1, \dots, b_n) + 1) = 2F(b_1, \dots, b_n).$$

Hence, $g' > 2F(b_1, \ldots, b_n)$ and since $g' \equiv 0 \pmod{2}$ then g' is expressible as a non-negative integer combination of $\bar{b}_1, \ldots, \bar{b}_n$. Therefore, g is also expressible as a non-negative integer combination of $\bar{b}_1, \ldots, \bar{b}_{n+1}$.

We prove now by contradiction that $4F(b_1,...,b_n)+1$ is not expressible as a non-negative integer combination of $\bar{b}_1,...,\bar{b}_{n+1}$.

Suppose there exist integers $x_i \geq 0$, $1 \leq i \leq n+1$, such that $\sum_{i=1}^{n+1} x_i \bar{b}_i = 4F(b_1,\ldots,b_n)+1$. Since $4F(b_1,\ldots,b_n)+1\not\equiv 0 \pmod{2}$ then $x_{n+1}\geq 1$.

On the other hand, if $x_{n+1} \ge 2$ then $x_{n+1}\bar{b}_{n+1} > 4F(b_1,\ldots,b_n)+1$ so $x_{n+1} \le 1$. Therefore $x_{n+1} = 1$, thus

$$\sum_{i=1}^{n} x_i \bar{b}_i + \bar{b}_{n+1} = 4F(b_1, \dots, b_n) + 1$$

and

$$\sum_{i=1}^{n} x_i \bar{b}_i = 2F(b_1, \dots, b_n)$$

then

$$\sum_{i=1}^{n} x_i b_i = F(b_1, \dots, b_n), \quad \text{which is impossible.}$$

Hence, $4F(b_1,...,b_n)+1$ is the largest natural number that is not expressible as a non-negative integer combination of $\bar{b}_1,...,\bar{b}_{n+1}$.

We may prove now Theorem 1.1.

Proof of theorem 1.1. Let $t < F(b_1, ..., b_n)$. We claim that there exist integers $x_i \ge 0$, with $1 \le i \le n$, such that $\sum_{i=1}^n x_i b_i = t$ if and only if $F(\bar{b}_1, ..., \bar{b}_{n+2}) < F(\bar{b}_1, ..., \bar{b}_{n+1})$.

Assume that there exist integers $x_i \ge 0$, $1 \le i \le n$, such that $\sum_{i=1}^n x_i b_i = t$. So, $\sum_{i=1}^n x_i \bar{b}_i = 2t$ and since $\bar{b}_{n+2} = F(\bar{b}_1, \dots, \bar{b}_{n+1}) - 2t$ then

$$F(\bar{b}_1,\ldots,\bar{b}_{n+1}) = \sum_{i=1}^{n+2} x_i \bar{b}_i.$$

Hence, $F(\bar{b}_1, \dots, \bar{b}_{n+2}) < F(\bar{b}_1, \dots, \bar{b}_{n+1})$.

Conversely, assume $F(\bar{b}_1, \dots, \bar{b}_{n+2}) < F(\bar{b}_1, \dots, \bar{b}_{n+1})$. By Proposition 2.2 we have,

$$F(\bar{b}_1,\ldots,\bar{b}_{n+1}) = 4F(b_1,\ldots,b_n) + 1 = \sum_{i=1}^{n+2} x_i \bar{b}_i$$

for some integers $x_i \ge 0$, with $1 \le i \le n+2$.

Since $F(\bar{b}_1,\ldots,\bar{b}_{n+1})$ is not expressible as a non-negative integer combination of $\bar{b}_1,\ldots,\bar{b}_{n+1}$ then $x_{n+2} \ge 1$.

On the other hand, from

$$x_{n+2}\bar{b}_{n+2} = x_{n+2}(F(\bar{b}_1,\dots,\bar{b}_{n+1}) - 2t)$$

and

$$2t < 2F(b_1, \ldots, b_n) < \frac{4F(b_1, \ldots, b_n) + 1}{2}$$

we have

$$x_{n+2}\bar{b}_{n+2} > x_{n+2} \left(4F(b_1, \dots, b_n) + 1 - \left(\frac{4F(b_1, \dots, b_n) + 1}{2} \right) \right)$$
$$= x_{n+2} \left(\frac{4F(b_1, \dots, b_n) + 1}{2} \right).$$

Thus, if $x_{n+2} \ge 2$ then $x_{n+2}\bar{b}_{n+2} > 4F(b_1,\ldots,b_n)+1$ so $x_{n+2} \le 1$. Therefore $x_{n+2}=1$, so

$$4F(b_1,\ldots,b_n)+1=\sum_{i=1}^{n+1}x_i\bar{b}_i+\bar{b}_{n+2}$$

and

$$4F(b_1,\ldots,b_n)+1=\sum_{i=1}^{n+1}x_i\bar{b}_i+F(\bar{b}_1,\ldots,\bar{b}_{n+1})-2t$$

then

$$2t = \sum_{i=1}^{n+1} x_i \bar{b}_i.$$

Finally, $\bar{b}_{n+1} = 2F(b_1, \dots, b_n) + 1 > 2t$ leads to $x_{n+1} = 0$. Therefore,

$$2t = \sum_{i=1}^{n} x_i \bar{b}_i$$

and
$$t = \sum_{i=1}^{n} x_i b_i$$
.

References

- [1] A. Brauer and J. E. Shockley: On a Problem of Frobenius, Journal für reine und angewandte Mathematik, 211 (1962), 399-408.
- [2] M. R. GAREY and D. S. JOHNSON: Computers and Intractability: A Guide to the Theory of NP-completeness, W. H. Freeman and Company, N.Y., 1979.
- [3] H. Greenberg: Solution to a linear diophantine equation for nonnegative integers, Journal of Algorithms, 9 (1988), 343-353.
- [4] M.GRÖTSCHEL, L.LOVÁSZ and A.SCHRIJVER: Geometric Algorithms and Combinatorial Optimization, Springer-Verlag, 1988.
- [5] M. HUJTER and B.VIZVÁRI: The exact solution to the Frobenius Problem with three variables, Journal of the Ramanujan Math.Soc., 2 (1987), 117-143.
- [6] R. Kannan: Lattice Translates of a Polytope and the Frobenius problem, Combinatorica, 12 (2), (1992), 161-177.
- [7] R. KANNAN: private communication, 1994.
- [8] C. H. PAPADIMITRIOU and K.STEIGLITZ: Combinatorial Optimization: Algorithms and Complexity, Prentice-Hall, Inc., 1982.
- [9] O. J. RÖDSETH: On a linear diophantine problem of Frobenius, Journal für reine und angewandte Mathematik, 301 (1968), 171-178.
- [10] H. E. SCARF and D.SHALLCROSS: The Frobenius problem and maximal lattice three bodies, Manuscript, (1989).
- [11] E. S. SELMER: On the linear diophantine problem of Frobenius, Journal für reine und angewandte Mathematik, 293/294 (1977), 1-17.
- [12] E. S. Selmer and O.Beyer: On the linear diophantine problem of Frobenius in three variables, *Journal für reine und angewandte Mathematik*, **301** (1978), 161–170.

J. L. Ramírez-Alfonsín

Universidad Nacional Autónoma de México Instituto de Matemáticas Area de la Investigación Científica Circuito Exterior, Ciudad Universitaria, México D.F. 04510 JLRA@SERVIDGR.DGSCA.UNAM.MX